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Abstract. The diffraction properties of a quenched Al-Mg alloy which has been recently termed as a
“cubic quasicrystal” are quantitatively reanalyzed. It is shown that the phase can be interpreted within
the superspace formalism as an ordinary incommensurately modulated structure. The cubic six-dimensional
superspace group that describes its symmetry properties has been determined. The additional inflation
symmetry features exhibited by the diffraction diagram can be summed up by its invariance for the inflation
factor (2+

√
3), but this property has its origin in the specific value of the modulus of the modulation wave

vectors, which is composition dependent. Other particular values of this modulus can give rise to similar
scaling properties. Further experiments are required to ellucidate if the mentioned inflation symmetry is a
fortuitous situation in a composition dependent wave vector, or has indeed the physical significance which
would allow to describe the system as a “cubic quasicrystal”.

PACS. 61.44.Fw Incommensurate crystals – 61.44.-n Semi-periodic solids – 61 Structure of solids
and liquids; crystallography

1 Introduction

A new metastable phase with very peculiar features has
been reported in the Al-Mg system [1]. At 61 at% Al, the
diffraction pattern of rapidly solidified samples apparently
exhibits quasicrystalline properties and cubic rotational
symmetry at the same time. The ratios among the mod-
uli of parallel diffraction vectors take such values as

√
3,√

3 + 1 or (
√

3 + 1)/2, that remind the inflation parame-

ters
√

5 + 2 and (
√

5− 1)/2 of icosahedral and decagonal
diffraction patterns, respectively, but, on the other hand,
the symmetry of the electron diffraction pattern corre-
sponds to a conventional cubic point group. This has led
to the identification of this structure as a “cubic quasicrys-
tal” with some kind of “new organisation of the condensed
matter” [1]. In the present paper, the experimental diffrac-
tion results for this alloy are revised and reinterpreted in
a quantitative manner. It is shown that the structure can
be described as a cubic incommensurate modulated struc-
ture with a well defined superspace group symmetry [2],
the incommensurate modulation being three-dimensional.
The inflation invariant features of the diffraction diagram
can be traced back to the peculiar value taken by the
modulus of the modulation wave vectors.
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2 Indexation of the diffraction pattern and
superspace symmetry

Figure 1 reproduces Figure 6 of reference [1] where a
scheme of the Bragg peaks observed for this peculiar
quenched state of Al61Mn39 was depicted. The diagrams
correspond to planes perpendicular to 4-fold, 3-fold and 2-
fold axes, the point group of the diffraction pattern being
m3̄m. As usual in incommensurate modulated structures,
all Bragg reflections in the observed diffraction diagram
can be indexed with a basis of n (> 3) rationally indepen-
dent vectors, n being the so-called rank of the structure.
The main reflections define a periodic average structure
and the remaining ones are the satellite reflections that
indicate the existence of a structural modulation. In the
case depicted in Figure 1, the main reflections form a bcc
reciprocal latice, i.e. the shortest diffraction vectors are
parallel to the 3-fold axes. Hence, we can choose for their

indexation (
3∑
i=1

hia
∗
i ) an orthonormal cubic basis parallel

to the 4-fold axes:

a∗1 = a∗(1, 0, 0), a∗2 = a∗(0, 1, 0), a∗3 = a∗(0, 0, 1) (1)

with the indices h1, h2, h3 satisfying the extinction rule
that yields a bcc lattice (h1, h2, h3 all even or all odd).
The scale parameter a∗ is 1.460 nm−1, so that the fcc
cubic unit cell parameter of the average structure in direct
space is a = 0.685 nm.
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Fig. 1. Scheme of three sections perpendicular to a, (a) 4-fold axis, (b) 3-fold axis and (c) 2-fold axis, of the reciprocal
quasilattice defined by equations (1), (2) and (3). m labels indicate main reflections (big spots ) and s labels satellite reflections
(small spots). In this last case, a second label shows the order of the satellite, according to our indexation model. A2, A3 and
A4 arrows indicate 2-, 3- and 4-fold axes, respectively.

Three additional vectors qi are necessary to index the
remaining (satellite) reflections and they can be chosen
parallel to the previously defined a∗i with values:

qi = (2−
√

3)a∗i i = 1, 2, 3. (2)

Therefore, 6 indices (h1, h2, h3,m1,m2,m3) are necessary
for the indexation of all diffraction vectors H:

H =
3∑
i=1

(hia
∗
i +miqi). (3)

In Figure 1, main reflections and satellites are distin-
guished by means of the labels m and s, respectively.
For satellites, a second label indicates the order of the
satellite, which is defined in this case as their sequen-
tial order in an arrangement from lower to higher values
of the modulus of the satellite “part” of the diffraction

vector (i.e. |
3∑
i=1

miqi|).

According to the diffraction photographs and schemes
shown in reference [1], the whole quasilattice of Bragg re-
flections apparently exhibits a centering extinction rule
(h1 + h2, h2 + h3, h1 + h3, m1 +m2, m2 +m3, m1 +m3

even), from which the one on main reflections, mentioned
above, is a particular case.

Main reflections suffer an additional systematic ex-
tinction described by the absence of reflections of type
(h1 h2 0, 0 0 0) with h1 + h2 = 4n + 2, and (cubic)
symmetry-related ones, while satellite reflections seem to
have also a similar one: around each non-extinct main re-
flection of type (h1 h2 0, 0 0 0) with h1 + h2 = 4n, the
associated satellite reflections of type (h1 h2 0, m1 m2 0)
are not present when m1 +m2 = 4n+ 2.

These are the only set of consistent systematic ex-
tinctions that can be observed. Some low-order satellites
which according to the rules above should be non-extinct
were, however, not depicted in the graphical schemes of
Figure 6 in reference [1]. But, indeed, if some of the pho-
tographs of the same reference are carefully studied, these
additional satellites can be actually seen in the experimen-
tal diffraction pattern, confirming the validity of the above
description. Figure 2 shows a more complete section per-
pendicular to a 2-fold axis of the reciprocal quasilattice.
The spots represent all reflections of type (3), except sys-
tematic extinctions, including all satellite reflections up to
9th order. The similarity of this figure and the correspond-
ing diffraction photograph shown in [1] is noticeable.

It is worth mentioning at this point that 2 −
√

3 ≈
0.268, the scale of the modulation wave vectors, is rela-
tively close to 1/4. If it were exactly 1/4, the structure
would be periodic with a cell parameter about 2.740 nm,
which is rather close to the cell parameter of the β phase,
the stable phase (of Fd3̄m symmetry) in this composition
range [3]. From the extinction rules associated to the main
reflections, the symmetry of the average structure can also
be identified as Fd3̄m.

The superspace symmetry of the incommensurate
structure as a whole can also be derived from the ob-
served diffraction pattern. The point group symmetry be-
ing m3̄m, for each operation R of such group and each re-
flection H of the reciprocal quasilattice, there is another
vector H′ in the quasilattice which satisfies H′ = RH.
According to the general formalism of superspace sym-
metry, a rotational symmetry operation in superspace,
Rs(R), is then given by a 6×6 integer matrix representing
the rotational transformation R of any diffraction vector
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(3) in terms of the corresponding linear transformation of
its 6 integer components (hi, mi) in the chosen indexa-
tion basis [4]. Symmetry operations do not mix the “main”
and “satellite” parts of the reflections, i.e. the matrices Rs
are reducible, having a block diagonal form for the chosen
basis {a∗i , qi}:

Rs(R) =

(
Ra(R) 0

0 Rq(R)

)
. (4)

This corresponds to a superspace group with pure in-
commensurate modulated wave vectors [5]. A generic op-
eration of the superspace group can be represented by
{R|t,ν}, where t ≡ (t1, t2, t3) and ν ≡ (ν1, ν2, ν3) in-
dicate the translational components of the operation in
direct superspace within the subspaces Va and Vq associ-
ated with the hi and mi reciprocal indices, respectively.
Notice that Vq is the so-called internal space, while Va is
not real space, but the one spanned by the superspace lat-
tice translations which are not fully contained in internal
space. The product law of the group is then given by:

{R2|t2,ν2}{R1|t1,ν1} = {R2R1|R
a(R2)t1

+ t2, R
q(R2)ν1 + ν2}. (5)

In our case, for the indexation basis chosen Ra(R) =
Rq(R) = R. Therefore, the structure of any possible su-
perspace group is such that its elements can be described
by pairs of space group operations {R|t}, {R|ν} defined
in the subspaces Va and Vq [6]. Hence, any possible super-
space group of the modulated structure under discussion
can be described by a pair (Ga, Gq) of conventional 3-
dimensional cubic space groups with point group m3̄m,
with their operations forming pairs in the sense of equa-
tions (4, 5).

The existence of a superspace symmetry operation
{R|t,ν} should be reflected in the symmetry proper-
ties of the structure factor of the real 3D structure,
which must fulfill for any diffraction vector H indexed
according to (3):

F (R̃H) = F (H) exp

{
−i2π

(
3∑
i=1

hiti +
3∑
i=1

miνi

)}
.

(6)

The extinction rules resulting from (6), as in conventional
crystallography, help to determine the symmetry of the
system. According to (6), Ga is to be identified with the
space group of the average structure Fd3̄m, while Gq,
is also F centered cubic group. The extinction rule ob-
served for satellites is only compatible with the existence
also in Gq of a glide plane d, so that the correspond-
ing superspace operation is {mz|1/4 1/4 0, 1/4 1/4 0}.
Indeed, according to equation (6), such operation is to
cause extinction for reflections (h1 h2 0, m1 m2 0) with
h1 + h2 + m1 + m2 = 4n + 2. The observed extinc-
tions for satellites around non-extinct main reflections
(h1+h2 = 4n), mentioned above, fit into this rule. The cor-
responding space group can then only be Fd3̄m or Fd3̄c.

The extinction rule which would result from a plane c
is not observed. From all these considerations, the super-
space group of the modulated structure can in principle be
labelled as P (Fd3̄m, Fd3̄m), where the label P indicates
the primitive character of the modulated wave vectors. If
a different set of modulation vectors (2) were chosen to in-
dex the satellite reflections, the superspace group would be
P (Fd3̄m, Fm3̄m), so both superspace groups are equiva-
lent.

3 Inflation symmetry

The so-called inflation symmetry is a characteristic fea-
ture of the quasilattice of Bragg reflections from a qua-
sicrystal. Once a vector basis for its indexation has been
chosen, an alternative basis of diffraction vectors can be
found with vectors parallel to the original ones and an
irrational number as scale factor. For example, in icosahe-
dral quasicrystals with a primitive quasilattice, two sets
of 6 vectors pointing to vertices of two concentric icosa-
hedra can index the same reciprocal quasilattice, and the
ratio between the moduli of the vectors of both basis is
(2 +

√
5) [4]. This means that if we multiply each vector

of the reciprocal quasilattice by that factor, the new vec-
tors belong to the initial quasilattice and, conversely, all
vectors in the first quasilattice are in the new one. Hence,
the relation between both quasilattices is one to one and
one talks of inflation symmetry, with inflation parame-
ter (2 +

√
5). Obviously, there will also be another basis

which differs from the first one by a scale factor (2 +
√

5)2

and so on. Conversely, a deflated basis with the factor
(2 +

√
5)−1 = (2−

√
5) can also be defined.

This type of purely geometrical inflation symme-
try properties in reciprocal space of the (non-weighted)
diffraction points exists in all quasicrystals. In the case
of experimental quasicrystalline systems, the usual non-
crystallographic rotational symmetry implies geometrical
constrains on the diffraction vectors which are at the ori-
gin of the observed inflation features. The presence of sim-
ilar features in a diffraction diagram of conventional cubic
symmetry, as reported in reference [1] for the quenched
Al61Mg39 alloy is, therefore, rather peculiar.

Let us first quantitatively demonstrate that we are in-
deed in the presence of a genuine inflation symmetry. For
this purpose, it is sufficient to check that inflation sym-
metry exists along one of the directions corresponding to
a primitive unit cell vector of the main reflections, say
k1 = a∗(1̄, 1, 1), since, in this case,the point symmetry
of the diagram forces the same inflation symmetry in two
other equivalent directions parallel to, say (1, 1̄, 1) and
(1, 1, 1̄). As any diffraction vector can be expressed as the
sum of three quasilattice vectors along these three direc-
tions, then all reciprocal quasilattice directions will have
such symmetry. Along the direction (1̄, 1, 1), the Bragg
reflections can be indexed using primitive basis vectors in
the form:

H = h1k1 +m1p1 = (h1 + (2−
√

3)m1)k1 (7)
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Fig. 2. Section of the reciprocal quasilattice perpendicular
to a 2-fold axis according to our indexation model. Satellite
reflections have been included up to 9th order.

Fig. 3. The same section of Figure 2, with a slightly different
modulation parameter 0.26.

where p1 = (2 −
√

3)k1 = |q1|(1̄, 1, 1). It can be easily
shown that this 1D sublattice has indeed inflation sym-
metry with inflation parameter α = (2 +

√
3). Any vector

of the quasilattice (7) multiplied by this factor is also an
integer linear combination of k1 and p1: H′ = αH =
h′1k1 + m′1p1, with h′1 = 4h1 + m1 and m′1 = −h1. Con-
versely, for each H in the reciprocal quasilattice it is pos-
sible to find another vector H′′ in the same quasilattice
so that H = αH′′. It can be demonstrated that all possi-
ble inflation parameters of the reciprocal quasilattice are
powers of this parameter α, the negative powers being in
fact deflation parameters.

It is important to note that all the superspace extinc-
tion rules discussed in the previous section are invariant
for this scale transformation, ensuring that the above de-
termined superspace group is well defined and indepen-
dent of the choice among the multiple set of equivalent
scale-transformed indexation bases.

A quasilattice of points as given in (2, 3) is dense
in real space and inflation symmetry does not consider,

Fig. 4. The same section of Figures 2 and 3, with modulation
parameter

√
2− 1.

in principle, the intensity of the Bragg reciprocal points.
One could say, then, that any quasilattice is inflation sym-
metric for any arbitrary factor up to any chosen accuracy
level. However, in practice, only a scarce discrete set of
Bragg spots are visible. Within this practical context, the
important property of the actual inflation factor (2 +

√
3)

is that the inflated quasilattice is exactly indexed in the old
basis using relatively small indices. This implies that the
scaling features of the quasilattice are likely to be observ-
able within the limited set of observed quasilattice points.
This is shown, for instance, in Figure 2, where only satel-
lite reflections up to a certain order are depicted. The in-
flation symmetry resulting from the peculiar value of the
moduli of qi is first remarkable by the fact that Bragg
spots are distributed rather regularly in reciprocal space.
In contrast, if the incommensurate parameter relating a∗i
and qi takes an arbitrary value, the rather uniform distri-
bution of satellite spots is lost, and some kind of accumu-
lation regions are visible where observable Bragg reflec-
tions concentrate. This is shown for instance in Figure 3,
where the same section of Bragg reflections as in Figure 2
is shown for a “normal” incommensurate modulation pa-
rameter |qi|/|a∗i | ≈ 0.26 (a change of less than 5%).

In quasicrystals with non-crystallographic point-
group, inflation symmetry is a consequence of the par-
ticular geometry forced on the quasilattice by the non-
crystallographic point-group symmetry. In the present
case, however, inflation properties appear as a result of
the special value of (2−

√
3) taken by the modulation pa-

rameter |qi|/|a∗i |, this value being not forced by the point
group symmetry of the system. In fact, this is not the
only possible value of |qi|/|a∗i |, which can give rise to in-
flation symmetry features on the diagram. For instance,
ratios

√
2 and

√
5−2 would cause similar scaling properties

with inflation parameter
√

2 + 1 and
√

5 + 2, respectively
(see Fig. 4). The first one is quite far from the actual
experimental value, the second one, however, is also close
to 1/4, and may be relevant for similar alloys with other
compositions.
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The main question which the experiments reported so
far have not ellucidated is whether this peculiar value of
the modulation vectors, observed at a particular composi-
tion, is a pure fortuitous situation in a modulated system
where the value of the modulation parameter is compo-
sition dependent, or indeed it has some physical signif-
icance, in the sense that this particular modulation pa-
rameter somehow “locks-in” for some finite range of alloy
composition. Indeed, when the value of the modulation
parameter is 2 −

√
3 the aspect of the diffraction pattern

drastically changes, but it could merely be a geometrical
property realised at some accidental point of the phase
diagram because of the continuous variation of the modu-
lation parameter as a function of composition. In fact, ac-
cording to reference [1] the observed scaling features were
anticipated and searched for a specific composition from
a simple extrapolation of the composition dependence of
the modulation vector.

4 Conclusions

The metastable phase Al61Mg39 obtained by Donnadieu
et al. [1] by rapid solidification can be interpreted as an
incommensurately modulated structure with crystallo-
graphic cubic average structure. Its diffraction pattern
can be indexed by means of 6 basis vectors, three of them
generate the reciprocal lattice of the average structure,

while three modulation vectors must be added to index the
satellite reflections. The modulation parameter relating
both vector sets is, within experimental resolution, 2−

√
3.

The superspace group of the incommensurate structure is
P (Fd3̄m, Fd3̄m), so that the average structure is Fd3̄m,
the same as for the stable phase at that composition. Due
to the specific value taken by the modulation parameter
the reciprocal quasilattice possesses inflation symmetry,
but is an open question if it is physically significant or a
fortuitous situation for a modulation parameter which is
composition dependent. The peculiar value of the observed
modulation parameter is not unique for producing scaling
features; other particular values could give rise to similar
inflation symmetry properties of the diffraction diagram.
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